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Abstract. A very general formula is obtained for the variable representing the kinetic 
temperature of a system of particles moving in any dimension and having arbitrary 
mean-field interaction, speeds and statistics. Interesting consequences emerge in the case 
of the Bose and Fermi distributions. 

1. Iutroductiou 

For an equilibrium statistical mechanical system the concept of the kinetic temperature 
is considered to be well understood [l], [Z,pp 77, 1381, [3-61, i.e. one supposedly 
liiiuwb iivw LU I ~ U  a une-ouuy uynamicai variame (I in me system s rest irame sucn ma1 L c-1 --- L.... 1 _.LI. "l --~-.-~~~,-  - - - A * ~ ~ - ~ ~ ~ ~  ~~~~I~ . I ~ ~ .  

( 8 )  = kT. (1)  

Here the expectation value is computed with respect to an underlying distribution 
functionf; k is the Boltzmann constant and T denotes the thermodynamic temperature. 
Indeed, for classical systems (labelled by the subscript Cl) and obeying Maxwell- 
Boltzmann statistics one has the celebrated equipartition formula due to Tolman as 
reported by Landsberg [4] 

where px  is the x-component of the molecule's momentum and E is the single-particle 
energy (Hamiitonianj written as  a function of coordinates and momenta. it is triviai 
to verify that Ocl reduces to p : l m  or to c2p: lE  according to whether the classical gas 
is non-relativistic [ 1-31 or relativistic [5,6] provided the potential is velocity-indepen- 
dent. A corresponding formula of 0 applicable to the Bose-Einstein and Fermi-Dirac 
systems is, however, not known in the literature [Z, p 1831. 

A very important question arises at this juncture namely, what is the most general, 
one-shot, expression of the equilibrium kinetic temperature 0 of a system of particles 
placed in a n  arbitrary-dimensional space, moving freely or under a mean-field, non- 
relativistic or relativistic in character, and obeying either classical or quantum statistics? 
The aim of the present paper is to derive such an expression for 0 and to summarize 
its main consequences. 

0305.4470/92/174517+04$04.50 0 1992 IOP Publishing Ltd 4517 



4518 

2. Formulation 

Let D be the dimensionality of the position space, E the energy of a typical molecule, 
p its momentum vector with Cartesian components pj, and U = a E / a p  its velocity vector 
with components U, ( j  = 1,2, . . . , D). The most probable one-body distribution function 
f can be written in the compact form [2, p 1831 
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_I f=oF -- F = {z-' exp(,R_F) + g)-' (3.) 

where g is the spin degeneracy factor, z the fugacity, p = (kT)-' the inverse thermody- 
namic temperature and U a signature number with permitted values 

U = 0, -1, +1 ( 3 b )  

( t  - u F ) F v , = - ~ F / ~ &  1sjSD. (4) 

according to whether the statistics is Maxwell, Bose or Fermi. We note the identity 

Multiplying both sides of (4) by pj and integrating over pj yields 
m m 

dpjpjP(l - uF)Fuj = dpj F. (5) 

!E gaing f:cm (4) :c ( 5 )  a paha! i::teg:a!io:: ha: bee:: pe:fo-ed oz the :',ght=hazd 
L I-, 

side, remembering that pjF vanishes at both the limits pj = f m  (because F vanishes 
exponentially at E =+m as seen from the definition ( 3 a ) ) .  

Integrating (5) further over the remaining momentum components 
dp, . . . dpj_, , d&+, , , , dp, and summing over j from 1 to D we obtain 

I D 

dDp p j u j ( l - u F ) f = D  dDpJ 

Comparison of (6) with ( I )  leads directly to the identification of the desired variable 
for the kinetic temperature as 

P.U tJ, tJ =- (1  - O F )  = 
D 1 + U  exp[(p - E)/ kT] 

where we have introduced the symbols 

p = kT In z. tJ - - = - . v E  P . U  P 
D D p  M -  

3. Discussion 

Equations ( 7 a  and b )  are the main results of the present paper and their interesting 
algebraic consequences are displayed in table 1 for the sake of ready reference. The 
following points deserve special mention, assuming the energy E to be always measured 
with respect to the ground level: 

expectation value equals the thermodynamic temperature kT) is not only a function 
of the coordinates and momenta but also depends on the numerical value of T in the 
quantum case. This fact may be explained by remembering that the process of tem- 
perature equilibration [ 3 , 6 ]  proceeds via a sequence of two-body collisions which 

( i )  Pe:haps the Ex%! izyXz?azt mess2ge of ( 7 )  is !hl! the geEera! vzr;.ab!e B (whnre 
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Table 1. Algebraic consequences of the general formula (7). 
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At lower At higher 
energies energies 

Distribution Parameters Dynamical variable ( T  fixed) ( T  fixed) 

IPlIUl 8,-0 aM+- P' v @"=o D 
Maxwell u=o 

if IpI-0 if 1pl-m 

atoms of a gas undergo against the atoms in the walls of the containing vessel. The 
density of states available to a scattered gas atom of momentum p contains an extra 
factor 1 i F where the plus sign corresponds to a Bose enhancement and minus sign 
to a Fermi suppression. Therefore, in a quantum gas the factor 1 f F multiplies the 
usual dynamical variable OM. 

(ii) For the Maxwell distribution having u = O  the kinetic temperature variable is 
just OM of (7b) in agreement with the existing treatments [l-61. The fact that OM 
depends only on the canonical Hamilton variables and not on the numerical value of 
T is a reflection of the classical nature of the system. 

(iii) In the case of the Bose distribution having U = - 1 ,  z < 1 and p < 0, we find 
from table 1 that at any momentum 

oBa  eM for TaO.  (8) 

The fact that OB depends not only on the canonical variables but also on the numerical 
value of T is a reflection of the quantum nature of the system. 

(iv) As regards the Fermi distribution characterized by U =  + I ,  z >  1 ,  p>O, table 
1 shows that at  all positive T and at any momentum we have €',<OM. As T tends 
towards absolute zero the Fermi distribution f tends to become more and more 
degenerate in the sense that the particles tend to occupy levels lying below the chemical 
potential p. Hence assuming E < p and the system to be cool, we find 

OF= OM exp[(E - p ) /  kT]  -, 0 as T+O. (9) 

This result has the nice physical interpretation that although the particles below the 
Fermi level have substantial momentum (i.e. sizeable value of 8,) yet their kinetic 
temperature variable OF is vanishingly small when the Fermi system becomes cold. To 
our knowledge such a result has not been reported before. 

(v) Equations (7a  and b) may be used to estimate directly the mean kinetic energy 
of a particle at the specified temperature. We shall illustrate this point for a free 
non-relafivistic ideal gas kept in a box so that E = p Z / 2 m  where m is the mass. Then 
the mean kinetic energy per particle is estimated by E* which satisfies ( 7 a )  with 8 
replaced by kT itself, i.e. 

1 +U exp[(p - E * ) / k T ]  = 2E*/DkT.  (10) 
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Clearly E* equals DkT/2 in classical statistics (U = 0) but not so in quantum statistics 

(vi) Before finishing, it may be added that our central formula ( 7 0 )  has been 
derived in the harycentric frame of the system. The question of performing 
GalileanJLorentz transformations leading to a moving frame does not concern us here 
as this aspect has been dealt with elsewhere [5] in the literature. 
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(U = *l). 
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